On the semigroup of square matrices
نویسنده
چکیده
We study the structure of nilpotent subsemigroups in the semigroup M(n,F) of all n × n matrices over a field, F, with respect to the operation of the usual matrix multiplication. We describe the maximal subsemigroups among the nilpotent subsemigroups of a fixed nilpotency degree and classify them up to isomorphism. We also describe isolated and completely isolated subsemigroups and conjugated elements in M(n,F).
منابع مشابه
On the square root of quadratic matrices
Here we present a new approach to calculating the square root of a quadratic matrix. Actually, the purpose of this article is to show how the Cayley-Hamilton theorem may be used to determine an explicit formula for all the square roots of $2times 2$ matrices.
متن کاملON SELBERG-TYPE SQUARE MATRICES INTEGRALS
In this paper we consider Selberg-type square matrices integrals with focus on Kummer-beta types I & II integrals. For generality of the results for real normed division algebras, the generalized matrix variate Kummer-beta types I & II are defined under the abstract algebra. Then Selberg-type integrals are calculated under orthogonal transformations.
متن کاملSemigroup identities in the monoid of two-by-two tropical matrices
We show that the monoid M2(T) of 2 × 2 tropical matrices is a regular semigroup satisfying the semigroup identity A2B4A2A2B2A2B4A2 =A2B4A2B2A2A2B4A2. Studying reduced identities for subsemigroups of M2(T), and introducing a faithful semigroup representation for the bicyclic monoid by 2 × 2 tropical matrices, we reprove Adjan’s identity for the bicyclic monoid in a much simpler way.
متن کاملSome Results on Polynomial Numerical Hulls of Perturbed Matrices
In this paper, the behavior of the pseudopolynomial numerical hull of a square complex matrix with respect to structured perturbations and its radius is investigated.
متن کاملDerivations on Certain Semigroup Algebras
In the present paper we give a partially negative answer to a conjecture of Ghahramani, Runde and Willis. We also discuss the derivation problem for both foundation semigroup algebras and Clifford semigroup algebras. In particular, we prove that if S is a topological Clifford semigroup for which Es is finite, then H1(M(S),M(S))={0}.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005